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SUMMARY

A semi-implicit numerical method for the three-dimensional incompressible Navier–Stokes equations
is presented. The method describes the velocity and the non-hydrostatic pressure �eld and the free
surface evolution in time. The governing equations are discretized by means of the �nite volume
method on a structured non-uniform grid; for this reason both local and global mass conservation are
guaranteed. Convective and di�usive �uxes on the control volume faces, as well as boundary conditions,
are approximated by high-order formulae. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Aim of the present work is a description of the dynamics of three-dimensional environmen-
tal free surface �ows; in particular, the work starts from the need to describe alpine glacier
dynamics. Following some recent works (see References [1–5] among others), ice is consid-
ered a non-Newtonian �uid in which viscosity depends on the deformation �eld through a
particular constitutive law (Glen’s law); in this context, a �uid-dynamic approach is used and
Navier–Stokes equations are considered.
Environmental �ows are usually fully three-dimensional and non-hydrostatic due to the com-

plex geometry of the domains (e.g. rivers, lakes and glaciers) and to the evolution of the free
surface which explains why a fully three-dimensional modelling approach is needed. In this
work a new fully three-dimensional semi-implicit method, applicable to generic environmental
Newtonian and non-Newtonian �uids, is proposed and tested in two versions, namely with and
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without modelling the free surface evolution. Of the two versions, the �rst directly calculates
the full pressure �eld, while the second deals with the non-hydrostatic regime by splitting the
pressure into two components and calculating the hydrostatic pressure component �rst and the
hydrodynamic pressure component in a subsequent step.
Since in the description of free surface environmental �ows, local and global mass conser-

vation is crucial, the �nite volume method is used. In order to properly describe the geometry
of the domain and of the free surface, non-uniform control volumes are used. This allows
a priori adaptivity of the solution by reducing the control volume dimensions where the do-
main geometry is particularly complex or where high gradients of the solution are expected.
The adaptivity of the control volume dimensions and the topological information related to
the space discretization are managed by a preprocessor written on purpose. New high-order
approximations are used for the computation of convective and di�usive �uxes on the control
volume faces (see the Appendix); boundary conditions are approximated by high-order gen-
eralized �nite di�erence formulae [6, 7]. Two di�erent schemes based on the fractional step
method are proposed for time discretization of the �eld equations.
In the next section the governing equations are presented and subsequently the space and

time discretizations are described. Finally, some �uid-dynamic applications are presented.

2. GOVERNING EQUATIONS

The dynamics of unsteady free surface �ows is described by the three-dimensional
Navier–Stokes equations that for an incompressible �uid, in conservation vector form are

@u
@t
+∇ · {uu − �∇u} = −∇p+ f

∇ · u = 0
(1)

where u=[u; v; w]T is the three-dimensional velocity vector, t is the time, ∇· is the divergence
operator, ∇ is the gradient operator, � is the kinematic viscosity, p is the kinematic pressure
and f represents the body forces divided by the �uid density. In this work only the gravity
force will be considered, hence f = g.
The surface of the �uid is a stress-free surface that can evolve in time. At this boundary

the kinematic boundary condition holds:

@�
@t
+ u

@�
@x
+ v

@�
@y

− w=0 (2)

where � is the surface elevation above the undisturbed reference system. The lower boundary
is not allowed to move in time, and therefore the tangency condition holds:

u
@(−h)
@x

+ v
@(−h)
@y

− w=0 (3)
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where h is the base depth. Integration of continuity equation from the base to the surface and
substitution of Equations (2) and (3) lead to the Saint Venant equation:

@�
@t
+
@
@x

∫ �

−h
u dz +

@
@y

∫ �

−h
v dz=0 (4)

This equation describes the free surface evolution in time as a function of the unit-discharges
and incorporates the physical law of mass conservation; the problem, particularly the free
surface evolution, can properly be described by using the conservation form of the �eld
Equations (1) and discretization techniques such as the �nite volume method [8] that guarantee
both local and global conservation of mass and momentum.

3. SPACE DISCRETIZATION

The computational domain is discretized by means of cell-centred control volumes in the
shape of parallelepipeds; their centres provide a structured grid of points. All unknown �eld
variables are evaluated at grid points. Although the control volumes are labelled at their centre
with a proper number as usually done in the �nite element method, for clarity in the paper
each control volume is labelled at its centre by the tern of indices ijk. The dimensions of each
control volume are �xijk , �yijk and �zijk . The volume horizontal dimensions are chosen on the
basis of a priori knowledge of the domain peculiarities and are �xed throughout computation.
The volume height is also �xed with the same criterion but, due to the free surface evolution,
the height of those including it can change in time and it may be necessary to add or suppress
some volumes; this is why the dimension �z will be time-indexed from now on.
The integral form of the �eld equations is written for each control volume; by Green–

Gauss theorem this leads to computing the surface integral of the �uxes (convective and
di�usive), i.e. to summing up the contributions of each control volume face, calculated by
the integral mean value theorem. Since the unknowns are computed at the grid points, the
�ux values on the volume faces have to be approximated. To this aim, high-order local
pro�les, involving a cloud of points in and out the control volume, are used and they are
general enough to allow for non-uniform distances between couples of points in the cloud;
the ratio of two consecutive distances can indeed vary in the range [1=3; 3]. As said above,
pressure and velocity are evaluated on co-located grids. No checker-board e�ect is su�ered
thanks to high-order formulae involving more than two points, while this is often the case
when two-point central schemes are used for the �rst derivatives, unless staggered grids are
adopted [9, 10]. In the �nite element context the checker-board e�ect is prevented by choos-
ing functional spaces for the pressure–velocity pair that satisfy the LBB condition [11, 12].
High-order general formulae are used also for the approximation of boundary conditions. In
order to take advantage of boundary conditions most and to maintain a high-order of ap-
proximation, boundary volumes include more than one grid point, namely the centre and
the points at the intersection of the boundary with grid lines orthogonal to it. Although
the solution is not directly computed at the boundary points, they belong to the stencils
used for the approximations of boundary conditions and of �uxes on the faces close to the
boundary.
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Figure 1. (a) Stencils for the approximation of the convective terms; and (b) of the di�usive terms.
(�; �; �) is the local reference system used for the computation of numerical schemes.

In Figure 1(a) the seven-point stencil used to approximate the convective �ux at point
Pw is presented. The proposed pro�le is globally second-order accurate. The accuracy along
the most relevant direction (�, orthogonal to the control volume face [13]) is of third order.
Complete studies of convergence and stability properties in one and two dimensions were
presented in References [14, 15]. The present method is the three-dimensional extension of
those schemes. Being symmetric with respect to the �-direction, the stencil is easy to handle,
even in the vicinity of the boundary. Whenever the spacing is uniform, this pro�le reduces
to QUICK-3D [16].
In Figure 1(b) the four-point stencil used to approximate the di�usive �ux at point Pw

is presented. A central di�erence scheme is considered since di�usion is not a directional
phenomenon and is not in�uenced by the velocity direction. The proposed pro�le is third-
order accurate even in the case of non-uniform spacing.
Adequate rotations and translations of the two stencils allow the application to the other

control volume faces. The coe�cients for the calculation of convective and di�usive �uxes
are presented in the Appendix.

4. TIME ADVANCING SCHEME

Numerical time integration of Navier–Stokes equations is often carried out by means of the
fractional step method (or projection method) in which the equations are integrated in two
or more steps. In the �rst step the velocity is computed by neglecting the divergence-free
constraint. In the subsequent steps, mass conservation is imposed, in general, by solving a
Poisson equation for the pressure. The fractional step method does not normally take the
free surface into account. This is why for free surface problems a new scheme is proposed,
while for rigid lid problems, in front of contrasting comments on performance and accuracy
of projection schemes [17–27], a standard P1 technique is used. For stability reasons, a semi-
implicit scheme is adopted for the momentum equation in the �rst step.

4.1. Type 1: rigid lid

When the surface evolution is not accounted for, the following two-step algorithm is
considered.
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In the �rst step the provisional velocities at time instant n+ 1, denoted by ũn+1, ṽn+1 and
w̃n+1 are computed through the momentum equations by neglecting the pressure contribution:

ũn+1ijk �z
n
ijk +

�t
�xijk

2∑
f=1

{(
unijk ũ
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where the right-hand sides are:

F1 = unijk�z
n
ijk + gx�t�z

n
ijk (8)

F2 = vnijk�z
n
ijk + gy�t�z

n
ijk (9)

F3 =wnijk�z
n
ijk + gz�t�z

n
ijk (10)

Faces 1 and 2 of the control volume are orthogonal to the x-axis, faces 3 and 4 to the
y-axis and faces 5 and 6 to the z-axis. The sums are extended to the control volume faces, the
subscript f of the braces refers to quantities calculated on the control volume faces and nx,
ny, nz are the outward normals to the control volume faces. The physical boundary conditions
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for the velocities are imposed. In the �rst step the continuity equation is not used so that the
provisional velocity �eld is, in general, non-divergence free.
In the second step the �nal pressure pn+1 is calculated: the following form of the momentum

equations is considered:

un+1ijk = ũ
n+1
ijk −�t

[
@pn+1

@x

]
ijk

(11)

vn+1ijk = ṽ
n+1
ijk −�t

[
@pn+1

@y

]
ijk

(12)

wn+1ijk = w̃
n+1
ijk −�t

[
@pn+1

@z

]
ijk

(13)

The discrete mass conservation equation is

1
�xijk

2∑
f=1

{un+1ijk �z
n
ijknx}f +

1
�yijk

4∑
f=3

{vn+1ijk �z
n
ijkny}f +

6∑
f=5

{wn+1ijk nz}f=0 (14)

Formal substitution of Equations (11)–(13) into the mass conservation Equation (14) gives
the following equation for the �nal pressure pn+1:
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f=3
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n
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6∑
f=5

{w̃n+1ijk nz}f (15)

As usually done in this method [17], homogeneous Neumann boundary conditions for the
pressure are applied on boundaries where Dirichlet boundary conditions for the velocity are
used and Dirichlet boundary conditions for the pressure are applied on boundaries where
Neumann boundary conditions for the velocity are used.
The �nal velocities are calculated by Equations (11)–(13). Since the continuity equation

has been imposed in the second step, the �nal velocity �eld is divergence free.

4.2. Type 2: free surface evolution

When the free surface evolution is considered, the time advancing scheme has to account for
it. The free surface algorithm takes its start from Reference [24] but several di�erences can
be highlighted:

• high-order formulae for both convective and di�usive terms replace lower-order approx-
imations;
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• implicit approximations for di�usive terms and semi-implicit for convective terms replace
explicit approximations (vertical di�usive terms excepted) in the momentum equation;

• direct solution of the momentum equation in the �rst step implies a complete and direct
exploitation of boundary conditions for the velocity; and

• the �nite volume method is used for the discretization of all the �eld equations.
The high-order approximations lead to a system matrix with irregular pattern; in order to

keep the �ll-in low and to obtain accurate results, a speci�cally devised direct method is
used [28].
The total kinematic pressure is divided into a hydrostatic part g(� − z), which directly

depends on the surface elevation, and a hydrodynamic part �:

p= g(�− z) + � (16)

In the �rst step the provisional velocities are calculated by neglecting the contribution of
the hydrodynamic pressure but considering the contribution of the hydrostatic pressure at the
preceding time-step n. In this case, Equations (5)–(7) hold with the following right-hand
sides:

F1 = unijk�z
n
ijk +�t�z

n
ijk

{
−
[
@�n
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ij
+ gx

}
(17)
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{
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[
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]
ij
+ gy

}
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F3 =wnijk�z
n
ijk +�t�z

n
ijk(g+ gz) (19)

After the provisional velocities are calculated, the provisional free surface elevation is calcu-
lated by the discretized form of Saint Venant Equation (4):

�̃n+1ij = �nij −
M∑
k=m

(
�t
�xij

2∑
f=1

{ũn+1ijk �z
n
ijknx}f +

�t
�yij

4∑
f=3

{ṽn+1ijk �z
n
ijkny}f

)
(20)

where the k-indexed sum is extended over a column of volumes, from the base (index m) to
the surface of the domain (index M).
In the second step the hydrodynamic pressure � is considered. In the presence of a moving

surface, the discrete form of the mass conservation Equation (14) holds only for the control
volumes not including the free surface, i.e. for k=m;m+ 1; : : : ; M − 1; thus, with the same
calculations presented in Section 4.1, the following equation for the hydrodynamic pressure
�n+1 for k=m;m+ 1; : : : ; M − 1 is obtained

�t

⎧⎨
⎩ 1
�xijk

2∑
f=1

{[
@�n+1

@x

]
ijk
�znijknx

}
f

+
1

�yijk

4∑
f=3

{[
@�n+1

@y

]
ijk
�znijkny

}
f

+
6∑
f=5

{[
@�n+1

@z

]
ijk
nz

}
f

⎫⎬
⎭

=
1

�xijk

2∑
f=1
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In order to calculate the hydrodynamic pressure �n+1 on the surface control volumes together
with the �nal free surface elevation, Equation (20) is considered but the �nal surface elevation
�n+1ij replaces the provisional surface elevation �̃n+1ij . Formal substitution of Equation (14) into
this equation for �n+1ij gives

�n+1ij − �nij
�t

+
1

�xijM

2∑
f=1

{un+1ijM�z
n
ijMnx}f

+
1

�yijM

4∑
f=3

{vn+1ijM�z
n
ijMny}f + {(wn+1ijM − wn+1ijm )nz}f= 5 =0 (22)

The following form of the momentum equations is considered:
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n+1
ijk −�t

[
@�n+1

@y

]
ijk

(24)

wn+1ijk = w̃
n+1
ijk −�t

[
@�n+1

@z

]
ijk

(25)

Substitution into Equation (22) gives
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(26)

In Equation (26) two unknowns are present: the new surface elevation �n+1ij and the hydrody-
namic pressure in the surface control volumes �n+1ijM . In order to solve this equation, the pressure
in the surface control volumes is considered hydrostatic, i.e. g(�n+1 − z)= g(�̃n+1 − z) + �n+1,
whence:

�n+1 = �̃n+1 +
�n+1

g
(27)
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Substitution of Equation (27) into Equation (26) gives the equation for the hydrodynamic
pressure in the surface control volumes:

− �
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}
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The hydrodynamic pressure is calculated by Equations (21) and (28) with homogeneous
Neumann boundary conditions at all boundaries.
After the hydrodynamic pressure is calculated, the �nal velocity �eld is computed by

Equations (23)–(25) and the �nal free surface elevation is computed by Equation (27). As in
the preceding algorithm, the �nal velocity �eld is divergence free since the mass conservation
has been imposed in the second step; moreover, the free surface elevation is consistent with
the inner velocity �eld since the Saint Venant equation has been used.

5. APPLICATIONS

5.1. Analytical test

In the �rst application the exact fully three-dimensional solution presented in Reference [29]
is considered:

u= − a[eax sin(ay ± bz) + eaz cos(ax ± by)]e−b2t (29)

v= − a[eay sin(az ± bx) + eax cos(ay ± bz)]e−b2t (30)

w= − a[eaz sin(ax ± by) + eay cos(az ± bx)]e−b2t (31)

p=−a
2

2
[e2ax + e2ay + e2az + 2 sin(ax ± by) cos(az ± bx)ea(y+z)

+ 2 sin(ay±bz) cos(ax±by)ea(x+z)+2 sin(az±bx) cos(ay±bz)ea(x+y)]e−2b2t (32)

where a=�=4 and b=�=2. The computational domain is a unitary cube where 06x61,
06y61 and −16z60. The domain has been discretized by 1008 control volumes of di-
mensions �x=�y=0:083, �z=0:143. Since the surface does not change in time, the �rst
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time advancing scheme is used (Section 4.1); the calculation has been carried out for 1000
time-steps with �t=0:003. In order to make the results comparable to those presented in
Reference [29] we work in the same conditions, i.e. the kinematic viscosity has been set to
unity, the initial conditions (t=0) have been imposed using Equations (29)–(32) and Dirich-
let boundary conditions have been imposed on all boundaries for velocity and pressure by
Equations (29)–(32).
In Figure 2(a) the calculated velocity �eld at time t=0:3 in the central longitudinal section

of the domain (y=0:5) is compared with the exact velocity �eld at the same time instant
in the same section (Figure 2(b)). From these �gures it can be noticed that the calculated
velocity �eld coincides with the exact one and also that the �ow �eld is rather complex and
not unidirectional, thus providing a good test case. In Figure 3(a) the time history of the
‘2 di�erence norm for velocity �u and pressure �p are presented. The discrete ‘2 norm for
velocity is computed by

�u=

√∑
vol

(
�x�y�z

3∑
i=1
(ui − ûi)2

)
vol

(33)

where the outer sum is extended to all control volumes, �x, �y, �z are the dimensions
of the control volume, ui and ûi are the three components of the numerically computed
velocity and of the exact velocity, respectively. The discrete ‘2 norm of the pressure is
computed by

�p=
√∑

vol
(�x�y�z(p− p̂)2)vol (34)

Figure 2. (a) Numerically computed; and (b) exact velocity �eld at t=0:3 in the
central transverse section of the computational domain (y=0:5).
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Figure 3. (a) Time history of the ‘2 di�erence norms of the velocity �eld �u and of the
pressure �p until time instant t=3 for a total of 1000 time-steps; and (b) time history of
the normalized ‘2 di�erence norms of the velocity �eld (�u)N and of the pressure (�p)N

until time instant t=0:3; to be noted that for t¿0:3, both velocity and pressure decrease
very quickly so that the normalized ‘2 di�erence norm loses sense.

It can be seen that the di�erence norm is always very small and rapidly decreases for
increasing time; moreover, no numerical instability or computational error dispersion can be
noticed. In Figure 3(b) the time history until time t=0:3 of the normalized ‘2 di�erence
norm of velocity (�u)N and pressure (�p)N are presented; these are calculated by

(�u)N =

√∑
vol �x�y�z

∑3
i=1(ui − ûi)2√∑

vol �x�y�z
∑3

i=1(ûi)2
(35)

(�p)N =

√∑
vol �x�y�z(p− p̂)2√∑

vol �x�y�zp̂2
(36)

It can be noticed that also the normalized di�erence norms are always very small. In particular,
it can be noticed that at time t=0:1 the normalized ‘2 di�erence norms are (�u)N =5× 10−3

and (�p)N =3× 10−4; the result for the velocity is comparable to that presented in Reference
[29] while the result for the pressure is better.

5.2. Oscillating basin

In the second test a standing wave in a basin is considered; this test has been solved by
di�erent authors with minor modi�cations [24, 27, 30–32]. Here a square basin of length
L=10m and depth h=10m is considered. Even if the problem is two dimensional, the basin
has been considered 2:5m thick so that it has been modelled in three dimensions. The initial
pro�le of the free surface is described by

�(x)= a cos
(
2�x
�

)
(37)

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:617–638



628 A. DEPONTI, V. PENNATI AND L. DE BIASE

where a=0:1m is the wave amplitude and �=2L is the wavelength. Since the wave amplitude
is small compared to the total depth, the wave celerity can be approximated by [24]

c=

√
g�
2�
tanh

(
2�h
�

)
(38)

In this test the free surface evolves in time, thus the second time advancing scheme is used
(Section 4.2); moreover, the hydrodynamic pressure plays here a fundamental role due to the
presence of vertical accelerations.
The problem has been non-dimensionalized considering the scale L for the lengths and c

for the velocities; the pressure has been non-dimensionalized with the scale c2, the gravity
acceleration with the scale c2=L and time with the scale L=c. The computational domain
has been discretized by 757 control volumes. The control volume dimensions in the x- and
y-directions are �xed and uniform (�x=0:048, �y=0:083) while the dimensions in the
z-direction are non-uniform; in particular, the lower volumes have a height of 0.116 non-
dimensional units while the upper volumes have a height of 0.06 non-dimensional units;
�nally, the surface control volumes height is allowed to vary in time.
Perfect slip conditions are applied on solid walls and the stress-free condition is applied at

the surface. Homogeneous Neumann boundary conditions for the hydrodynamic pressure are
applied at all boundaries.
Results for an inviscid �uid and �t=0:001 are presented in Figure 4. It can be noticed that

the model is stable even with no viscosity and that only a very small wave amplitude attenu-
ation is obtained; in this simulation no mass loss has been detected. By graphical comparison
with References [24, 27], it can be noticed that the wave attenuation is much lower.
Tests with di�erent values of the kinematic viscosity have been performed: in Figure 5

the time history of the surface elevation at x=0 for �=0:1; 0:01; 0:001 corresponding to
Re=10; 100; 1000 are presented; �t=0:01 has been used for the simulations with �=0:1

Figure 4. Time history of the free surface evolution at x=0 and 1 for an inviscid �uid.
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Figure 5. Time history of the free surface evolution at x=0 for �=0:1; 0:01; 0:001
corresponding to Re=10; 100; 1000.

Figure 6. Time history of the free surface evolution at x=0 and 1.

and �=0:01, while �t=0:001 has been used for the simulation with �=0:001. The results
show attenuation of the wave amplitude due to viscous e�ects that agree with the physics of the
problem and with the results presented in References [30, 31]. The solution is globally stable
and converges to the undisturbed steady solution. Results obtained with �=0:05 and �t=0:01
are presented in detail. In Figure 6 the time history of the surface evolution at x=0 and 1
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Figure 7. Time history of the velocity and hydrodynamic pressure at three con-
trol points near the surface: A ≡ (0:120; 0:125;−0; 150), B ≡ (0:500; 0:125;−0; 150),
C ≡ (0:880; 0:125;−0; 150). (a) The evolution of the horizontal velocity u is pre-
sented; (b) the evolution of the transverse velocity v; (c) the evolution of the vertical

velocity w; and (d) the evolution of the hydrodynamic pressure.

is presented: the attenuation of the wave amplitude can be appreciated. In Figure 7 the time
history of the evolution of the three components of the velocity �eld and of the hydrodynamic
pressure at three control points near the surface are presented. It can be noticed that the
horizontal velocity u and the vertical velocity w oscillate and change directions in agreement
with the free surface evolution; moreover, it can be noticed that the transverse velocity v
is always null as expected. Finally, the importance of the hydrodynamic component in the
evolution of the motion �eld and of the free surface can be appreciated in Figure 7(d). In
Figure 8 the free surface geometry and the velocity and pressure �elds in the central vertical
section of the domain at two di�erent time instants are presented. In particular, it can be
seen how the motion �eld inverts direction from t=0:25 to 1.25 and how the hydrodynamic
pressure drives the free surface evolution. In all the simulations no appreciable mass loss has
been detected.
All the tests considered in the cited literature use a small wave amplitude (i.e. 1% of

the basin depth); we have been unable to �nd larger amplitudes. In the following tests a
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Figure 8. (a,d) Free surface geometry; (b,e) velocity; and (c,f) pressure �elds in the
central vertical section of the domain at time t=0:25 and 1.25, respectively.
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Figure 9. (a) Time history of the free surface evolution at x=0 and 1 for �=0:1;
and (b) �=0:01 with a wave amplitude a=0:07.

bigger wave amplitude (i.e. 7% of the basin depth) is considered. In this case, the �ow
regime is non-hydrostatic and up to three volume layers are a�ected by the free surface
evolution. Results of the simulations with �=0:1 and 0.01 and �t=0:01 are presented in
Figure 9. In the simulation with �=0:1, at time t=20, a mass loss of 0.2% is detected,
while in the simulation with �=0:01, at time t=10, a mass loss of 0.5% is detected; these
small mass losses are most probably caused by the geometric description of the free surface
evolution.

5.3. Three-dimensional oscillating basin

In the following application a three-dimensional free surface �ow is modelled. A basin of
length Lx=10 m, width Ly=5 m and depth h=10 m is considered. The initial pro�le of the
free surface is described by:

�(x; y)=
a
2

[
cos
(
2�x
�x

)
+ cos

(
2�x
�y

)]
(39)

where a=0:1 is the wave amplitude, �x=2Lx and �y=2Ly are the two wavelengths.
As in the previous test the second time advancing scheme is used. The problem has been non-
dimensionalized considering the scale Lx for the lengths and the scale c=√
(g�x=2�) tanh(2�h=�x) for the velocities; the pressure has been non-dimensionalized with

the scale c2, the gravity acceleration with the scale c2=Lx and time with the scale Lx=c.
The computational domain has been discretized by 1512 control volumes. The horizontal
dimensions of the control volumes are �x=0:048 and �y=0:083 non-dimensional units;
the vertical dimensions are non-uniform; in particular the lower volumes have a height of
0.093 non-dimensional units while the upper volumes have a height of 0.05 non-dimensional
units; moreover, the surface control volumes heights are allowed to vary in time. Perfect
slip conditions are applied on solid walls and the stress-free condition is applied at the
surface. Homogeneous Neumann boundary conditions for the hydrodynamic pressure are
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Figure 10. Surface elevation at four time instants.

applied at all boundaries. An inviscid �uid is considered. In Figure 10 the free surface geome-
tries at four di�erent time instants are presented. It can be noticed that the surface geometry
is fully three-dimensional and that at each time instant one of the four vertexes reaches the
maximum. In Figure 11 the time histories of free surface, pressure and velocity at two con-
trol points are presented. The control points for the free surface are P1 ≡ (0:024; 0:042)
and P2 ≡ (0:976; 0:458); those for pressure and velocity are P3 ≡ (0:024; 0:042;−0:025) and
P4 ≡ (0:976; 0:458;−0:025). From the time history of the surface evolution and of the hy-
drodynamic pressure evolution, the wave interaction can be appreciated; these interactions are
created by the superposition of waves travelling in di�erent directions with di�erent velocities
and being re�ected by the walls of the basin. Form the time history of the velocity compo-
nents evolution, the three-dimensionality of the problem can be appreciated: the three velocity
components are always comparable and none vanishes. Finally, it can be noticed that the free
surface evolution is in agreement with the hydrodynamic pressure and with the vertical velocity
component.
In addition to the inviscid case, a test with a non-dimensional kinematic viscosity �=0:01

has been performed on the same domain, with the same initial and boundary conditions. The
time history of surface elevation, hydrodynamic pressure and velocity evolutions at the same
control points are presented in Figure 12. Due to viscosity, the wave interactions are greater
and determine great deformations in the wave period and great amplitude attenuations; as a
consequence the transverse velocity component v almost vanishes after some time. In this
case, the phenomenon is fully three dimensional at the beginning of the process and evolves
into an almost two-dimensional phenomenon after some time. After the phenomenon gets
two-dimensional (around non-dimensional time t=4) the wave attenuation in time is small
and is driven by the viscous e�ects.
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Figure 11. Three-dimensional oscillating basin without viscosity. Time history of the surface
evolution at two control points: (a) P1 ≡ (0:024; 0:042); and (d) P2 ≡ (0:976; 0:458);
time history of the hydrodynamic pressure and velocity �elds at two control points (b,c)

P3 ≡ (0:024; 0:042;−0:025); and (e,f) P4 ≡ (0:976; 0:458;−0:025), respectively.

6. CONCLUSIONS

The presented three-dimensional method for incompressible Navier–Stokes equations describes
the hydrodynamic pressure �eld and the free surface evolution of environmental �ows. The use
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Figure 12. Three-dimensional oscillating basin in the presence of viscosity. Time history of the surface
evolution at two control points: (a) P1 ≡ (0:024; 0:042); and (d) P2 ≡ (0:976; 0:458); time history of
the hydrodynamic pressure and velocity �elds at two control points (b,c) P3 ≡ (0:024; 0:042;−0:025);

and (e,f) P4 ≡ (0:976; 0:458;−0:025), respectively.

of the �nite volume method guarantees local and global mass conservation as demonstrated by
the applications. The use of control volumes in the form of parallelepipeds and with variable
heights at the surface is e�ective; indeed small mass losses are detected only when big surface
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waves are considered. High-order approximations of the �uxes on the control volume faces
and of the boundary conditions result in a good accuracy of the method, as demonstrated by
the analytical test. The oscillating basin test demonstrates the accuracy and the stability of the
model even in the presence of big wave amplitudes. Finally, the three-dimensional application
shows that the model can e�ectively deal with fully three-dimensional, non-hydrostatic free
surface �ows.
In all the applications presented here Newtonian �uids have been considered; nevertheless

the use of particular constitutive laws, e.g. Glen’s law for ice, allows the description of the
dynamics of non-Newtonian �uids [33]. The use of control volumes with inclined faces is
also under study and its implementation should lead to an improved description of the free
surface evolution and a better approximation of boundary conditions.

APPENDIX A

The convective term for the generic function � on the control volume face is calculated as a
function of �-values at neighbouring points �i on the basis of the seven-point upwind stencil
presented in Figure 1(a) with the following formula:

�f=
7∑
i=1
Ci�i (A1)

with

C1 =
�f(�f − �3)
�1(�1 + �3)

C2 = 1 +
�f(�3 − �1 − �f)

�1�3
− ��2

12y4�5
− ��2

12�6�7

C3 =
�f(�1 + �f)
�3(�1 + �3)

C4 =
��2

12�4(�4 + �5)

C5 =
��2

12�5(�4 + �5)

C6 =
��2

12�6(�6 + �7)

C7 =
��2

12�7(�6 + �7)

(A2)

where �i, �i, �i are the coordinates of neighbouring points Pi, ��, ��, �� are the control
volume dimensions and �f, �f, �f are the coordinates of the point on the control volume
face.
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The di�usive term for the generic function � on the control volume face is calculated as a
function of �-values at neighbouring points �i on the basis of the four-point central stencil
presented in Figure 1(b) with the following formula:

�f=
4∑
i=1
Di�i (A3)

with

D1 =
�23

4�1(�1 + �3)(�1 + �4)

D2 = − 1
�3

− �3
4�1�4

D3 =
−4�1�3 − 3�23 + 4�1�4 + 4�3�4

4�3(�1 + �3)(�4 − �3)

D4 =
�23

4�4(�3 − �4)(�1 + �4)

(A4)

where �i, �i and �i are the coordinates of neighbouring points Pi.
Further details on the calculation of di�usive and convective terms can be found in

Reference [34].
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